Categories
- Antiques & Collectibles 13
- Architecture 36
- Art 47
- Bibles 22
- Biography & Autobiography 811
- Body, Mind & Spirit 110
- Business & Economics 26
- Computers 4
- Cooking 94
- Crafts & Hobbies 3
- Drama 346
- Education 45
- Family & Relationships 50
- Fiction 11812
- Games 19
- Gardening 17
- Health & Fitness 34
- History 1377
- House & Home 1
- Humor 147
- Juvenile Fiction 1873
- Juvenile Nonfiction 202
- Language Arts & Disciplines 88
- Law 16
- Literary Collections 686
- Literary Criticism 179
- Mathematics 13
- Medical 41
- Music 39
- Nature 179
- Non-Classifiable 1768
- Performing Arts 7
- Periodicals 1453
- Philosophy 62
- Photography 2
- Poetry 896
- Political Science 203
- Psychology 42
- Reference 154
- Religion 488
- Science 126
- Self-Help 61
- Social Science 80
- Sports & Recreation 34
- Study Aids 3
- Technology & Engineering 59
- Transportation 23
- Travel 463
- True Crime 29
Five of Maxwell's Papers
Description:
Excerpt
When observing the spectrum formed by looking at a long vertical slit through a simple prism, I noticed an elongated dark spot running up and down in the blue, and following the motion of the eye as it moved up and down the spectrum, but refusing to pass out of the blue into the other colours. It was plain that the spot belonged both to the eye and to the blue part of the spectrum. The result to which I have come is, that the appearance is due to the yellow spot on the retina, commonly called the Foramen Centrale of Soemmering. The most convenient method of observing the spot is by presenting to the eye in not too rapid succession, blue and yellow glasses, or, still better, allowing blue and yellow papers to revolve slowly before the eye. In this way the spot is seen in the blue. It fades rapidly, but is renewed every time the yellow comes in to relieve the effect of the blue. By using a Nicol's prism along with this apparatus, the brushes of Haidinger are well seen in connexion with the spot, and the fact of the brushes being the spot analysed by polarized light becomes evident. If we look steadily at an object behind a series of bright bars which move in front of it, we shall see a curious bending of the bars as they come up to the place of the yellow spot. The part which comes over the spot seems to start in advance of the rest of the bar, and this would seem to indicate a greater rapidity of sensation at the yellow spot than in the surrounding retina. But I find the experiment difficult, and I hope for better results from more accurate observers.
***
On the Theory of Compound Colours with reference to Mixtures of
Blue and Yellow Light.
James Clerk Maxwell
[From the Report of the British Association, 1856.]
When we mix together blue and yellow paint, we obtain green paint. This fact is well known to all who have handled colours; and it is universally admitted that blue and yellow make green. Red, yellow, and blue, being the primary colours among painters, green is regarded as a secondary colour, arising from the mixture of blue and yellow. Newton, however, found that the green of the spectrum was not the same thing as the mixture of two colours of the spectrum, for such a mixture could be separated by the prism, while the green of the spectrum resisted further decomposition. But still it was believed that yellow and blue would make a green, though not that of the spectrum. As far as I am aware, the first experiment on the subject is that of M. Plateau, who, before 1819, made a disc with alternate sectors of prussian blue and gamboge, and observed that, when spinning, the resultant tint was not green, but a neutral gray, inclining sometimes to yellow or blue, but never to green. Prof. J. D. Forbes of Edinburgh made similar experiments in 1849, with the same result. Prof. Helmholtz of Konigsberg, to whom we owe the most complete investigation on visible colour, has given the true explanation of this phenomenon. The result of mixing two coloured powders is not by any means the same as mixing the beams of light which flow from each separately. In the latter case we receive all the light which comes either from the one powder or the other. In the former, much of the light coming from one powder falls on particles of the other, and we receive only that portion which has escaped absorption by one or other. Thus the light coming from a mixture of blue and yellow powder, consists partly of light coming directly from blue particles or yellow particles, and partly of light acted on by both blue and yellow particles. This latter light is green, since the blue stops the red, yellow, and orange, and the yellow stops the blue and violet. I have made experiments on the mixture of blue and yellow light—by rapid rotation, by combined reflexion and transmission, by viewing them out of focus, in stripes, at a great distance, by throwing the colours of the spectrum on a screen, and by receiving them into the eye directly; and I have arranged a portable apparatus by which any one may see the result of this or any other mixture of the colours of the spectrum. In all these cases blue and yellow do not make green. I have also made experiments on the mixture of coloured powders. Those which I used principally were "mineral blue" (from copper) and "chrome-yellow." Other blue and yellow pigments gave curious results, but it was more difficult to make the mixtures, and the greens were less uniform in tint. The mixtures of these colours were made by weight, and were painted on discs of paper, which were afterwards treated in the manner described in my paper "On Colour as perceived by the Eye," in the Transactions of the Royal Society of Edinburgh, Vol....