Categories
- Antiques & Collectibles 13
- Architecture 36
- Art 47
- Bibles 22
- Biography & Autobiography 811
- Body, Mind & Spirit 110
- Business & Economics 26
- Computers 4
- Cooking 94
- Crafts & Hobbies 3
- Drama 346
- Education 45
- Family & Relationships 50
- Fiction 11812
- Games 19
- Gardening 17
- Health & Fitness 34
- History 1377
- House & Home 1
- Humor 147
- Juvenile Fiction 1873
- Juvenile Nonfiction 202
- Language Arts & Disciplines 88
- Law 16
- Literary Collections 686
- Literary Criticism 179
- Mathematics 13
- Medical 41
- Music 39
- Nature 179
- Non-Classifiable 1768
- Performing Arts 7
- Periodicals 1453
- Philosophy 62
- Photography 2
- Poetry 896
- Political Science 203
- Psychology 42
- Reference 154
- Religion 488
- Science 126
- Self-Help 61
- Social Science 80
- Sports & Recreation 34
- Study Aids 3
- Technology & Engineering 59
- Transportation 23
- Travel 463
- True Crime 29
Scientific American Supplement, No. 288, July 9, 1881
by: Various
Categories:
Description:
Excerpt
A Chemist of merit, Mr. A. Müntz, who has already made himself known by important labors and by analytical researches of great precision, has been led to a very curious and totally unexpected discovery, on the subject of which he has kindly given us information in detail, which we place before our readers.[1] Mr. Müntz has discovered that arable soil, waters of the ocean and streams, and the atmosphere contain traces of alcohol; and that this compound, formed by the fermentation of organic matters, is everywhere distributed throughout nature. We should add that only infinitesimal quantities are involved—reaching only the proportion of millionths—yet the fact, for all that, offers a no less powerful interest. The method of analysis which has permitted the facts to be shown is very elegant and scrupulously exact, and is worthy of being made known.
[Footnote 1: The accompanying engravings have been made from drawings of the apparatus in the laboratory of which Mr. Müntz is director, at the Agronomic Institute.]
[Illustration: FIG. 1.—FIRST DISTILLATORY APPARATUS.]
[Illustration: FIG. 2.—SECOND DISTILLATORY APPARATUS.]
Mr. Müntz's method of procedure is as follows: He submits to distillation three or four gallons of snow, rain, or sea water in an apparatus such as shown in Fig. 1. The part which serves as a boiler, and which holds the liquid to be distilled, is a milk-can, B. The vapors given off through the action of the heat circulate through a leaden tube some thirty-three feet in length, and then traverse a tube inclosed within a refrigerating cylinder, T, which is kept constantly cold by a current of water. They are finally condensed in a glass flask, R, which forms the receiver. When 100 or 150 cubic centimeters of condensed liquid (which contains all the alcohol) are collected in the receiver, the operations are suspended. The liquid thus obtained is distilled anew in a second apparatus, which is analogous to the preceding but much smaller (Fig. 2). The liquid is heated in the flask, B, and its vapor, after traversing a glass worm, is condensed in the tube, T. The operation is suspended as soon as five or six cubic centimeters of the condensed liquid have been collected in the test-tube, R. The latter is now removed, and to its liquid contents, there is added a small quantity of iodine and carbonate of soda. The mixture is slightly heated, and soon there are seen forming, through precipitation, small crystals of iodoform. Under such circumstances, iodoform could only have been formed through the presence of an alcohol in the liquid. These analytical operations are verified by Mr. Müntz as follows: He distills in the same apparatus three to four gallons of chemically pure distilled water, and ascertains positively that under these conditions iodine and carbonate of soda give absolutely no reaction. Finally, to complete the demonstration and to ascertain the approximate quantity of alcohol contained in natural waters, he undertakes the double fractional distillation of a certain quantity of pure water to which he has previously added a one-millionth part of alcohol. Under these circumstances the iodine and carbonate of soda give a precipitate of iodoform exactly similar to that obtained by treating natural waters.
[Illustration: Fig. 3.—IODOFORM CRYSTALS OBTAINED DIRECTLY (greatly magnified).]
[Illustration: FIG. 4,—IODOFORM CRYSTALS OBTAINED WITH RAIN WATER.]
In the case of arable soil, Mr. Müntz stirs up a weighed quantity of the material to be analyzed in a certain proportion of water, distills it in the smaller of the two apparatus, and detects the alcohol by means of the same operation as before.
[Illustration: FIG. 5.—IODOFORM CRYSTALS OBTAINED WITH SNOW WATER.]
The formation of iodoform by precipitation under the action of iodine and carbonate of soda is a very sensitive test for alcohol....